
UROP 1803

SUTD Mapping Project

Ryan Pek1, Lee Cheng Yong1, Simon Perrault2

Singapore University of Technology and Design

Acad Year 2024 Sep (2430) to Acad Year 2025 Jan (2510)

1Student
2Supervisor

CONTENTS CONTENTS

Contents

1 Introduction 2

2 Methodology 3
2.1 Data Collection . 3

2.1.1 Equipment Used . 3
2.1.2 Campus Layout . 3
2.1.3 Mapping details . 4

2.2 Interface . 4
2.3 Running the CLI Program . 4
2.4 Custom Modules . 5
2.5 Graph Data Structure and Its Role in This Project . 5
2.6 Module: Graph.py . 6

2.6.1 Purpose and Overview . 6
2.6.2 Class: Graph . 6
2.6.3 Core Functionalities . 7
2.6.4 Graph Persistence and Data Management . 8
2.6.5 Error Handling and Validation . 8
2.6.6 Strategic Implementations . 8
2.6.7 Integration with Other Modules . 8
2.6.8 Conclusion . 8

2.7 Module: Json OS ProcessingFunctions.py . 9
2.7.1 Purpose and Overview . 9
2.7.2 Core Functionalities . 9
2.7.3 Strategic Implementations . 10
2.7.4 Integration with Other Modules . 10
2.7.5 Conclusion . 10

2.8 Module: Path query.py . 11
2.8.1 Purpose and Overview . 11
2.8.2 Class: Query . 11
2.8.3 Core Functionalities . 11
2.8.4 Error Handling and Validation . 12
2.8.5 Data Management . 12
2.8.6 Strategic Implementations . 13
2.8.7 Integration with Other Modules . 13
2.8.8 Conclusion . 13

2.9 Inter-Module Interactions . 14
2.10 Strategic Overview . 14
2.11 Recommendations for Enhancements . 14
2.12 External Modules Used . 15
2.13 Hardware . 15
2.14 Software . 15

3 Results 16
3.1 CLI tool . 16
3.2 Visual Validation of Mapping Accuracy . 25

4 Conclusion / Learning Points / Reflections 27

5 Acknowledgments 30

1

1 INTRODUCTION

Abstract

This project presents a Python3 client based utility designed to assist users in navigating locations within
the Singapore University of Technology and Design (SUTD) campus. Unlike existing solutions, our application
offers dynamic path-finding capabilities tailored for new and visiting individuals. By leveraging built-in Python
libraries and custom modules, the project emphasizes educational growth and minimizes external dependencies.
Additionally, we conducted primary data collection to accurately map campus distances, ensuring reliability
and precision in navigation. The project is open-sourced to encourage further development, data validation and
integration by the community in SUTD.

1 Introduction

Navigating the Singapore University of Technology and Design (SUTD) campus can be challenging for new
and visiting individuals. Existing solutions, such as the official Campus Map site and the Telegram-based Sam -
SUTD Assistive Maps bot, provide general location descriptions but lack comprehensive path-finding functionalities.

To address this gap, the SUTD Mapping Project aims to develop a Python 3 utility that offers detailed navi-
gation assistance within the campus. Python was chosen due to its accessibility and prevalence within the SUTD
community, particularly in common computing modules.

From the project’s inception, the team prioritized minimizing dependencies on external libraries. By utilizing
Python’s built-in libraries and developing custom modules, we enhanced the educational value of the project, fos-
tering a deeper understanding of software development and algorithm design.

One significant challenge encountered was obtaining accurate distance data for campus locations since the data
was not readily available. The team used surveying tools to gather actual measurements, allowing us to set the
weights for representing the campus in graph format.

We intend to open source the project, enabling other developers and interested parties to utilize our dataset
and tools in their own projects. Future developments worth considering include advanced features such as real-time
navigation updates, integration with mobile platforms, and expanded data sets for more comprehensive coverage.

The source code and dataset we collected for the project can be found and cloned from Github, this report will
detail the intended usage of the utility. Specifically, the individual floor data can be found in json format under
here. The timeline and changes to the program can be viewed through the project’s commit history.

A key learning objective we have set for this UROP apart from writing software is to experience firsthand data
collection, building of software to parse the data and the complications involved in the process of doing so.

2

https://sutd.edu.sg/About/Contact-Us/Campus-Map
https://t.me/SUTDMapBot?start=task_name
https://t.me/SUTDMapBot?start=task_name
https://github.com/rpeky/SUTD_Map_project.git
https://github.com/rpeky/SUTD_Map_project/tree/master/SUTD_Map_project/Master

2 METHODOLOGY

2 Methodology

2.1 Data Collection

Campus Layout SUTD comprises four main academic buildings (1, 2, 3, and 5) plus residential and recreational
blocks. We set out to focus on the academic cluster (1, 2 and 5) due to its high undergraduate footfall.

Survey Procedure

• Reference Maps: Fire-safety boards and lift lobby floor plans were photographed for initial node placement.

• Tools: Laser range-finders and a surveyor’s wheel captured linear distances; a lensatic compass recorded
bearings.

• Node Definition: Traversable locations with signage, visual landmarks, or inter-building connections were
instantiated as graph vertices. Specifically, we focused on identifying venues/rooms that make practical and
realistic sense like lecture theatres, classrooms and offices.

2.1.1 Equipment Used

(a) (b) (c)

Figure 1: (a) Compass (b) Laser Rangefinder (c) Surveyor’s wheel

2.1.2 Campus Layout

We initially attempted to source the campus layout via the Office of Campus Infrastructure and Facilities but
was unable to get a response. Instead, we opted to make use of either the floor load plan that is available at every
service lift, or the floor plan based on the fire safety board, whichever was more readable and accessible.

SUTD occupies a relatively isolated plot of land in the rough shape of a square, with two sides adjacent to
the main road, one side to a canal and the last to a fenced residential area. The campus itself consists of 4 fac-
ulty buildings (Buildings 1,2,3,5)3, 5 residential accommodations (Buildings 51,53,55,57,59), 1 recreational building
(Building 61). Of which, we have decided to map the main faculty buildings since this cluster of buildings have
the highest footfall and has the highest chance of having visitors unfamiliar to the University to visit. Making
Buildings 1,2,3 and 5 the most suitable region to be mapped.

To plot out the nodes and edges on the maps, we had printed out the maps, followed by identifying locations
of interest by hand. As a general rule of thumb, locations that are significant typically have names, are easily
accessible, and places that lead to locations outside of the current map.

3There is no Building 4

3

2.2 Interface 2 METHODOLOGY

2.1.3 Mapping details

Each location in the university can be represented as nodes in a graph, with the shortest traversable path and
distance to the nearest neighbour of a location being the edge and weights respectively.

While it is possible to store every node on one graph, in practice this will make the data difficult to read and
maintain. We have separated the nodes into clusters based on which building and which floor they exist in; with
the exception of the First Floor, which will act as one large map. The decision to combine the first floor was to
simplify the calculation required to connect the different portions of the first floor.

Using Python 3, we can use the built-in data structure of dictionary to represent this graph. In our imple-
mentation, each node will be a key in the dictionary key-value pair, while the neighbours are keys in a dictionary
nested in the original node’s value in it’s key-value pair.

To store and load the data, we can make use of the built in json module, storing the data from each floor in
its own json file. The design choice was to keep the data maintainable, since large scale changes often occur on a
floor to floor basis, allowing us to access and modify the dataset more conveniently.

The json format also gives the dataset scalability, we have tried to keep to the standard json data types when
storing data of the nodes. In theory this should allow the data set to be used outside of Python (and by extension
native Javascrypt) so long as they can parse json and store the data types within json specifications.

An average map will contain roughly 30kb of data, consisting of the node, its neighbours and the related
distances and bearing information, modifiers for the program to change the node’s weight as well as meta data of
the node for description purposes.

2.2 Interface

The program was designed to be used in CLI in order to focus more on the software architecture, algorithms
and data collection.

As mentioned previously, we have also drafted a telegram bot for users to query a path from their current
location to their desired location. The path returned will be a descriptive step by step instruction list, consisting
of landmark descriptions, distance and direction from our dataset.

Telegram was chosen as a platform due to its widespread use in the SUTD community, hosting the general
university chat, as well as most if not all of the official club chats. Visitors to the University will likely have
an account in order to communicate with SUTD groups, hence the convenience in integrating this utility into a
telegram bot.

2.3 Running the CLI Program

To make use of the utility on a terminal, clone the project from GitHub and follow the steps below:

g i t c l one https : // github . com/rpeky/SUTD Map project . g i t
cd SUTD Map project/SUTD Map project
python −m venv venv
source venv/bin / a c t i v a t e
pip i n s t a l l −r requ i rements . txt
python3 SUTD Map project . py

The dependency used in the main file is matplotlib to plot out the graphs to visually check the output. Either
run in a pyton virtual environment or comment out the sections using matplotlib.

4

2.4 Custom Modules 2 METHODOLOGY

2.4 Custom Modules

We have written a set of custom modules to more easily access and log changes from our python dictionary
containing the graph information of a floor to json format.

The following sections delineate the primary custom modules utilized in the project: Graph.py,
Json OS ProcessingFunctions.py, and Path query.py. Each module is discussed in detail below, highlighting
the purpose, functionalities, strategic implementations, and interactions with other modules.

2.5 Graph Data Structure and Its Role in This Project

A graph is a fundamental abstraction for modelling pairwise relationships. Formally, following the terminology of
Introduction to Algorithms [1], a graph is an ordered pair G = (V,E) in which:

• V is a finite, non-empty set of vertices (also called nodes); and

• E ⊆ V × V is a set of edges that connect vertices.

An edge (u, v) ∈ E indicates that vertices u and v share a relationship. When edge pairs are unordered ({u, v}),
we obtain an undirected graph whose connections work both ways. When order matters, the structure is a
directed graph (digraph), suitable for modelling one-way streets, precedence constraints, or data-flow dependencies.

Weighted graphs. If every edge carries an associated numeric weight w : E → R≥0—for instance distance,
travel-time, or cost—then G is said to be weighted. In our case, the weights are the real measured distances
between any two identified vertices in the campus.

Why a graph for campus navigation? The SUTD Mapping Project treats each physically significant location
(lecture-theatre entrance, lift lobby, bridge portal, . . .) as a vertex, and each traversable corridor or stair flight as
an edge. Edge weights represent surveyed walking distances, and potentially later adjusted by live sensor-feedback
(crowd density, rain exposure) to reflect real-time conditions.

This choice of representation delivers three key benefits:

1. Algorithmic clarity. Classic graph algorithms— breadth-first search for reachability, Dijkstra for optimal
routing, A* for heuristic search—are directly applicable without ad-hoc special-case code.

2. Extensibility. Adding a new floor or building reduces to inserting vertices and edges; the underlying logic
remains unchanged.

3. Interoperability. The graph can be exported as JSON and consumed by external visualisation tools,
simulation engines, or mobile clients without violating interface boundaries.

Intuitively, it is tempting to describe the graph in which the university campus as an undirected weighted
graph. However on further thought, specifically distances that are physically the same such as staircase distances
or elevator traversals can be weighted further to describe the perceived distance rather than absolute.

For example, traversal of staircases is a fixed 20 meters up and down, but the perceived distance going up
will be higher due to the additional effort required to ascend the stairs than descend. We can modify the distance
by multiplying upwards staircase traversals with an arbitrary multiplier like 1.25 to compensate for this discrepancy.

Consequently the relationship between vertices is represented as a symmetric directed graph. A digraph is a
graph in which: ∀ vertices u, v ∈ V , (u, v) ∈ E =⇒ (v, u) ∈ E. In the implementation below, the Graph.py module
encapsulates all operations on this data structure — vertex management, edge manipulation, and path-finding;
providing a clean API for the rest of the system to build upon.

5

2.6 Module: Graph.py 2 METHODOLOGY

2.6 Module: Graph.py

2.6.1 Purpose and Overview

The Graph.pymodule is foundational to the SUTDMapping Project, encapsulating all graph-related functionalities
necessary for mapping and pathfinding within the campus. It defines the Graph class, which manages the creation,
manipulation, and analysis of graph structures representing campus locations and their interconnections. This
module is instrumental in enabling users to add or remove vertices (locations), establish or sever connections
(paths), and compute optimal routes using various algorithms.

2.6.2 Class: Graph

Attributes

• vertex template: A class-level dictionary template defining the default structure and attributes of each
vertex in the graph. Attributes include neighbors, coordinates, visitation status, density metrics, shelter
status, connection points, and more.

• dd graph: A dictionary representing the graph, where each key is a vertex identifier, and the value is a
dictionary of vertex attributes.

• dd lkup, dd cplkup, dd idlkup: Dictionaries serving as lookup tables for directory mappings, connection
points, and location IDs respectively.

• access clearance: A list indicating the clearance levels required to access certain vertices.

• area file tosave, localname: Strings storing filenames and local identifiers for graph data persistence.

Initialization (init) Upon instantiation, the Graph class performs the following steps:

1. Ensures the existence of necessary directories using Json OS ProcessingFunctions.check folders exist().

2. Initializes graph-related attributes and lookup tables.

3. Checks for the existence of the specified area file. If it exists, the graph is loaded from the master directory;
otherwise, the graph generation tool is invoked to create a new graph.

4. Initiates the graph generation tool to facilitate user-driven graph modifications.

Destructor (del) The destructor ensures that upon object deletion:

1. The current graph state is saved to the working directory.

2. Lookup tables are updated to reflect any changes in the graph.

3. Dijkstra’s algorithm described in Numerische Mathematik [2] is executed across all vertices to pre-compute
shortest paths.

4. Final log messages are printed for debugging and confirmation.

6

2.6 Module: Graph.py 2 METHODOLOGY

2.6.3 Core Functionalities

Graph Generation and Modification

• add vertex(): Facilitates the addition of new vertices to the graph, ensuring unique identifiers and initializing
default attributes.

• remove vertex(): Enables the removal of existing vertices, along with their associated edges, maintaining
graph integrity.

• neighbour tool(vertex ID): Manages the addition of neighbors to a specified vertex, allowing for dynamic
graph expansion.

• modify display existing vertex(): Provides an interface for modifying attributes of existing vertices, such
as density, shelter status, and connection points.

• add neighbour(vertex ID, neighbour ID): Establishes bidirectional connections between vertices, calcu-
lating distance and heading based on coordinates or user input.

Pathfinding Algorithms

• Dijkstra modified(startpoint): Implements Dijkstra’s algorithm to compute the shortest paths from a
given starting vertex to all other vertices within the graph.

• Dijkstra all(): Executes Dijkstra’s algorithm for every vertex in the graph, precomputing all-pairs shortest
paths.

• pathfind long rundijk supermap(): Utilizes a supermap—a comprehensive graph amalgamating all indi-
vidual maps—to perform extensive pathfinding across the entire campus.

• A star(source, destination), bfs(source, dest), Ant colony(source), genetic search(source): Place-
holder methods indicating planned implementations of alternative pathfinding algorithms to enhance search
efficiency and flexibility.

Utility and Helper Methods

• query(query type, prompt, options, quit option, confirm selected option): A versatile method fa-
cilitating user interactions for selecting options, inputting text, or specifying ranges, with built-in validation
and confirmation mechanisms.

• distance heading to dx dy(distance, heading) and dx dy to distance heading(dx, dy): Static meth-
ods converting between polar (distance and heading) and Cartesian (dx, dy) coordinates to manage vertex
positioning.

• convertloc todd(vtx), verify endpoint samegraph(endpoint): Methods for translating vertex identifiers
and verifying graph consistency.

• set coordinates(vertex ID), set room ID(vertex), set Average travel time(vertex): Methods for up-
dating vertex attributes based on user input or algorithmic calculations.

7

2.6 Module: Graph.py 2 METHODOLOGY

2.6.4 Graph Persistence and Data Management

The Graph class leverages the Json OS ProcessingFunctions module to handle data persistence:

• store solution Master(): Saves the current graph state to the master directory for long-term storage.

• store solution Working(): Saves the graph state to the working directory for ongoing modifications.

• check area file exist(area file): Verifies the existence of a graph file within the master directory.

2.6.5 Error Handling and Validation

Robust error handling mechanisms are integrated throughout the Graph class to ensure reliability:

• Input validations for user selections, ensuring indices and inputs are within valid ranges.

• Confirmation prompts for critical actions such as adding or removing vertices and modifying attributes.

• Graceful exits and returns to previous menus upon invalid inputs or user-initiated quits.

2.6.6 Strategic Implementations

Modular Design The Graph class is meticulously designed to encapsulate all graph-related operations, promot-
ing reusability and ease of maintenance. By segregating functionalities into distinct methods, the class facilitates
targeted updates and scalability.

User-Centric Interface Interactive methods like add vertex(), remove vertex(), and
modify display existing vertex() prioritize user engagement, providing intuitive prompts and feedback to guide
users through graph modifications seamlessly.

Efficiency in Pathfinding Implementing Dijkstra’s algorithm and planning for additional algorithms (A*, BFS,
Ant Colony Optimization) demonstrates a commitment to optimizing pathfinding performance. The supermap ap-
proach further enhances efficiency by consolidating all maps into a singular graph structure, reducing computational
overhead during cross-map navigation.

Data Integrity and Consistency By maintaining and updating comprehensive lookup tables (dd lkup,
dd cplkup, dd idlkup) and ensuring synchronized updates across graph modifications, the module upholds data
integrity, preventing inconsistencies and facilitating accurate pathfinding results.

Extensibility The modular architecture and clear method delineations allow for effortless integration of future
enhancements, such as real-time data adjustments based on environmental factors (e.g., density changes during
lunch hours) and the incorporation of advanced pathfinding heuristics.

2.6.7 Integration with Other Modules

The Graph.py module is tightly integrated with the Json OS ProcessingFunctions.py module:

• Json OS ProcessingFunctions.py: Utilized for loading and saving graph data, managing directories, and
handling logging operations.

• Path query.py: Interfaces with Graph.py to perform pathfinding operations based on user inputs.

This integration ensures that graph-related functionalities operate on up-to-date and accurate data, providing
reliable navigation assistance to users.

2.6.8 Conclusion

The Graph.py module is a pivotal component of the SUTD Mapping Project, seamlessly integrating graph man-
agement, user interaction, and pathfinding algorithms to provide a robust navigation tool. Its modular design and
reliance on custom processing functions and data structures ensure both flexibility and scalability, laying a solid
foundation for future enhancements and feature additions.

8

2.7 Module: Json OS ProcessingFunctions.py 2 METHODOLOGY

2.7 Module: Json OS ProcessingFunctions.py

2.7.1 Purpose and Overview

The Json OS ProcessingFunctions.py module serves as a utility library for managing JSON file operations,
directory validations, and logging mechanisms. It abstracts the complexities of file I/O and system interactions,
providing streamlined functions that facilitate data persistence, retrieval, and maintenance across the project.

2.7.2 Core Functionalities

Directory Management

• check folders exist(): Ensures the presence of essential directories (Master, Working, LookUp, Misc, Log)
within the project’s root. If a directory is absent, it is created, and the action is logged.

File Operations

• check file exist(filename, folder idx): Verifies the existence of a specified file within a designated
directory, returning a boolean result.

• save file json(tosave, filename, folder idx): Saves a Python dictionary or list to a JSON file within
the specified directory, formatting the output for readability.

• load file json(filename, folder idx): Loads and returns the contents of a JSON file as a Python object.

• pullup vertices(filename, folder idx): Retrieves and returns a list of vertex identifiers from a specified
JSON file.

Logging Mechanism

• generate logfile(logmsg): Appends timestamped log messages to a logs.log file within the Log directory,
facilitating tracking of system actions and debugging.

• clear logfile(): Clears the contents of the logs.log file, resetting the log history.

Lookup Table Reconstruction

• rebuild lookupdir(): Reconstructs the Lookup directory.json file by scanning all graph files in the
Master directory, ensuring accurate mappings between vertices and their corresponding files.

• rebuild lookupcon(): Rebuilds the Lookup connections.json file by identifying vertices marked as con-
nection points across all graph files, maintaining up-to-date connection mappings.

• rebuild locationID(): Regenerates the Lookup locationID.json file by extracting room IDs from graph
files, ensuring accurate associations between room codes and vertex identifiers.

Supermap Generation

• generate supermap(): Aggregates all individual graph files within the Master directory into a comprehensive
.supermap.json file, enabling large-scale pathfinding operations across the entire campus.

9

2.7 Module: Json OS ProcessingFunctions.py 2 METHODOLOGY

2.7.3 Strategic Implementations

Abstraction and Re-usability By encapsulating common file and directory operations within dedicated func-
tions, the module promotes code reuse and reduces redundancy. This abstraction allows other modules (e.g.,
Graph.py and Path query.py) to perform file-related tasks without delving into the intricacies of file handling.

Data Integrity and Consistency The module ensures data integrity by:

• Validating the existence of necessary directories and files before performing operations.

• Maintaining synchronized and up-to-date lookup tables through reconstruction functions.

• Formatting JSON outputs consistently, facilitating interoperability and ease of data manipulation.

Logging for Debugging and Auditing The integrated logging mechanism records critical actions and events,
providing a valuable trail for debugging and auditing purposes. Timestamped logs offer insights into the system’s
operational history, aiding in troubleshooting and performance analysis.

Scalability through Supermap Generation The ability to generate a supermap underscores the module’s
scalability, enabling the system to handle extensive graphs encompassing the entire campus. This strategic imple-
mentation ensures that pathfinding algorithms can operate efficiently on large datasets, supporting comprehensive
navigation functionalities.

Error Handling and Recovery Functions like check folders exist() and check file exist() incorporate
error checking to prevent runtime issues caused by missing directories or files. By proactively managing such
scenarios, the module enhances the overall robustness of the software utility.

2.7.4 Integration with Other Modules

The Json OS ProcessingFunctions.py module is tightly integrated with both the Graph.py and Path query.py

modules:

• Graph.py: Utilizes file loading and saving functions to manage graph data persistence.

• Path query.py: Relies on lookup tables and supermap data for accurate pathfinding operations.

This integration ensures that data management operations are consistent and efficient across the entire software
architecture.

2.7.5 Conclusion

The Json OS ProcessingFunctions.pymodule is a vital utility library within the SUTD Mapping Project, provid-
ing essential functionalities for data management, directory validation, and logging. Its strategic design emphasizes
abstraction, reusability, and data integrity, ensuring seamless integration with other modules and facilitating robust
and scalable software development.

10

2.8 Module: Path query.py 2 METHODOLOGY

2.8 Module: Path query.py

2.8.1 Purpose and Overview

The Path query.py module is a critical component of the SUTD Mapping Project, responsible for handling user
interactions related to pathfinding within the SUTD campus. It defines the Query class, which facilitates the
selection of start and end locations, translates user inputs into internal vertex identifiers, and computes the shortest
paths using graph-based algorithms. This module leverages the functionalities provided by the Graph.py and
Json OS ProcessingFunctions.py modules to deliver an efficient and user-friendly navigation experience.

2.8.2 Class: Query

Attributes

• dd locationid: A dictionary loaded from Lookup locationID.json, mapping user-entered location IDs to
internal vertex names.

• dd masterlookup: A dictionary loaded from Lookup directory.json, associating internal vertex names with
specific map files.

Initialization (init) Upon instantiation, the Query class performs the following actions:

1. Loads essential lookup tables:

• Lookup locationID.json: Maps location IDs to internal vertex identifiers.

• Lookup directory.json: Associates internal vertex names with corresponding map files.

2. Prints the loaded data for debugging purposes.

3. Displays a welcome message to the user.

4. Initiates the pathfinding process by invoking the method pathfind long rundijk supermap().

Destructor (del) The destructor ensures that a message is printed when an instance of the Query class is
deleted, aiding in debugging and resource management:

def __del__(self):

print(’test del query class’)

2.8.3 Core Functionalities

User Interaction Methods

• welcome message(): Displays an introductory message to the user.

• display options startpoint(): Presents users with options to select their starting or destination locations,
such as entering a room ID directly or selecting from a predefined location list.

• locationlist(): Guides the user through a multi-step selection process, including building selection, floor
selection, and specific location selection within the chosen floor.

• inputroomID(): Allows users to input a specific room ID, validating the input against the
Lookup locationID.json file and translating the valid ID to an internal vertex name.

• startloc(): Initiates the selection of the starting location by invoking display options startpoint().

• endloc(): Initiates the selection of the destination location similarly.

11

2.8 Module: Path query.py 2 METHODOLOGY

Pathfinding Algorithms

• dijkstra(sp): Implements a modified Dijkstra’s algorithm to compute the shortest path from a starting
vertex sp within a single map, returning the distance and a list containing the Path to reach the destination
vertex.

• pathfind long rundijk supermap(): Extends pathfinding across multiple maps using a supermap. It loads
the comprehensive .supermap.json file, executes Dijkstra’s algorithm from each vertex to every other vertex,
and stores the computed shortest paths and distances in a solution dictionary.

• twosidepfind(sloc, eloc), pathfind long assumeleastmaps(sloc, eloc): Placeholder methods for planned
implementations for more advanced pathfinding strategies.

• bfs supermap(source, dest), genetic supermap(source), antcolony(source, dest): Placeholder meth-
ods for alternative pathfinding algorithms (e.g., Breadth-First Search, Genetic Algorithms, Ant Colony Op-
timization) to enhance search flexibility and efficiency.

Utility and Helper Methods

• convertloc todd(vtx): Translates a vertex name to its corresponding data dictionary by identifying the
map it belongs to and loading the specific map data file.

• translate internalnameforoutput(raw data): Formats internal location names into a user-friendly format
by replacing underscores with spaces and capitalizing words, while preserving acronyms.

Pathfinding Orchestration

• path find(): Orchestrates the overall pathfinding process by prompting the user to select starting and
destination locations, determining if both locations reside within the same map, executing the appropriate
pathfinding algorithm, and displaying the shortest path and distance to the user.

2.8.4 Error Handling and Validation

Robust error handling mechanisms are integrated throughout the Query class to ensure reliability:

• Validates user inputs against predefined options and existing data entries.

• Handles exceptions gracefully, providing informative feedback to users.

• Ensures that invalid or out-of-range inputs do not cause the application to crash.

2.8.5 Data Management

The module relies heavily on JSON files for data management:

• Lookup locationID.json: Maps user-entered room IDs to internal identifiers.

• Lookup directory.json: Associates internal identifiers with specific map data files.

• .supermap.json: A comprehensive graph representation of the entire campus used for advanced pathfinding.

By organizing data in this manner, the Query class efficiently accesses and manipulates necessary information
to perform its functions.

12

2.8 Module: Path query.py 2 METHODOLOGY

2.8.6 Strategic Implementations

Modular Design The Query class is meticulously designed to encapsulate all pathfinding-related operations,
promoting reusability and ease of maintenance. By segregating functionalities into distinct methods, the class
facilitates targeted updates and scalability.

User-Centric Interface Interactive methods like display options startpoint(), locationlist(), and
inputroomID() prioritize user engagement, providing intuitive prompts and feedback to guide users through the
pathfinding process seamlessly.

Efficiency in Pathfinding Implementing Dijkstra’s algorithm and planning for the integration of a supermap
demonstrates a commitment to optimizing pathfinding performance. The supermap approach enhances efficiency
by consolidating all maps into a singular graph structure, reducing computational overhead during cross-map
navigation.

Data Integrity and Consistency By maintaining and updating comprehensive lookup tables (dd locationid,
dd masterlookup) and ensuring synchronized updates across pathfinding operations, the module upholds data
integrity, preventing inconsistencies and facilitating accurate navigation results.

Extensibility The modular architecture and clear method delineations allow for effortless integration of future
enhancements, such as real-time data adjustments based on environmental factors (e.g., density changes during
lunch hours) and the incorporation of advanced pathfinding heuristics.

2.8.7 Integration with Other Modules

The Path query.py module is tightly integrated with both the Graph.py and Json OS ProcessingFunctions.py

modules:

• Graph.py: Utilized for graph-based operations such as loading maps, managing vertices, and executing
pathfinding algorithms.

• Json OS ProcessingFunctions.py: Handles data persistence, loading, and saving of JSON files, ensuring
seamless data management.

This integration ensures that pathfinding functionalities operate on up-to-date and accurate data, providing
reliable navigation assistance to users.

2.8.8 Conclusion

The Path query.py module is a pivotal component of the SUTD Mapping Project, seamlessly integrating user
interaction, data processing, and pathfinding algorithms to provide a robust navigation tool. Its modular design
and reliance on custom processing functions and data structures ensure both flexibility and scalability, laying a
solid foundation for future enhancements and feature additions.

13

2.9 Inter-Module Interactions 2 METHODOLOGY

2.9 Inter-Module Interactions

The program hinges on the effective interaction between the custom modules:

• Graph.py relies on Json OS ProcessingFunctions.py for loading and saving graph data, ensuring persistent
and accurate graph representations.

• Path query.py utilizes both Graph.py and Json OS ProcessingFunctions.py to facilitate user interactions,
manage data, and execute pathfinding algorithms based on user inputs.

This inter connectivity ensures that each module can perform its designated functions efficiently while main-
taining data consistency and integrity across the entire software ecosystem.

2.10 Strategic Overview

The strategic design of the software modules in the SUTD Mapping Project emphasizes:

• Modularity: Each module encapsulates specific functionalities, promoting code reuse, and simplifying main-
tenance.

• Scalability: The architecture supports the expansion of features and the integration of additional pathfinding
algorithms without significant restructuring.

• User-Centric Design: Interactive methods and intuitive prompts ensure that users can navigate and utilize
the mapping tool with ease.

• Data Integrity: Comprehensive error handling and consistent data management practices uphold the ac-
curacy and reliability of the mapping and pathfinding functionalities.

• Extensibility: The clear delineation of responsibilities among modules allows for the effortless incorporation
of future enhancements, such as real-time data adjustments and advanced heuristics.

2.11 Recommendations for Enhancements

To further enhance the robustness and user experience of the SUTD Mapping Project, the following recommenda-
tions are proposed:

• UML Diagrams and Flowcharts: Develop UML diagrams for each module to visually represent class
structures, method interactions, and data flows. These visuals can complement the textual explanations and
aid in better understanding the system architecture.

• Performance Metrics: Include performance metrics or benchmarks demonstrating the efficiency of pathfind-
ing algorithms or the responsiveness of graph modifications. For instance, report on the time complexity of
Dijkstra’s algorithm implementation or the scalability of the supermap approach.

• User Feedback and Testing: Incorporate results from user testing sessions or feedback surveys that
highlight the usability and effectiveness of the mapping and pathfinding functionalities. This empirical
evidence can showcase the practical utility and user satisfaction levels.

• Future Enhancements: Outline potential future enhancements, such as the implementation of real-time
data adjustments based on environmental factors (e.g., density changes during lunch hours), integration with
mobile platforms, or the incorporation of machine learning algorithms for predictive pathfinding.

• Mapping Completion: Outline potential future enhancements, such as the implementation of real-time
data adjustments based on environmental factors (e.g., density changes during lunch hours), integration with
mobile platforms, or the incorporation of machine learning algorithms for predictive pathfinding.

By implementing these recommendations, the report will provide a comprehensive and insightful overview of
the software modules, their functionalities, and their strategic roles within the SUTD Mapping Project.

14

2.12 External Modules Used 2 METHODOLOGY

2.12 External Modules Used

While we initially wrote a url query module to access telegram where users can interface to use this utility, it
would be more effective to make use of the Telegram bot API to write the communication layer between the utility
and the telegram bot acting as the frontend.

2.13 Hardware

We have made use of a few Raspberry Pis in the project for different roles. One Pi was used as the host for
the telegram bot, supplying the responses after calculating the responses. We have configured systemd on this Pi
to keep running the telegram module so long as there is internet access to the Pi.

The rest of the Pis were planned to act as nodes for our sensors to send live data to, before aggregating and
cleaning the live data to update the dataset (such as closing open air routes when it is raining, or increase the
weights of edges with high traffic flow)

We had planned to fabricate simple devices consisting of an Espressif ESP32 connected to sensors to detect
the flow of people, and the presence of rain. Based on physical survey of the site, these two factors would affect4

the pathing solution the greatest. (to show which points we identified as choke points, to work on writing the
communication/transmission of sensor data from the ESP32, to the relay ESP32 to how the pi receives the data).
Due to time constraints from the academic terms we were unable to fully write code, fabricate or test this idea.

For the measurement devices, we have made use of Laser Rangefinders to measure the linear distances between
nodes, a surveyors wheel for distances not within line of sight, and a lensatic compass to determine the bearing
in the direction we are measuring towards. These physical tool allow us to detemrine the weights and metadata
of the nodes, giving us the necessary information to calculate the shortest paths, as well as provide context clues
such as which direction to turn towards based on the relative difference between angles of nodes.

2.14 Software

We used Python 3 for the backbone of the project, the reason being that Python 3 is taught in the common
terms 1 and 3 in SUTD, as well as one of the most popular and known programming languages, making it an ac-
cessible language for the project contributors to work on. In addition, Python as a diverse ecosystem of packages,
both built in and native which further development can take advantage of in the future. We have kept the utility
as native as possible to reduce the reliance on dependencies in any projects working on top of ours.

On the Raspberry Pi 5, it runs on RPI OS, a Debian based operating system for the Raspberry Pi. We have
taken advantage of systemd to run our telegram bot service, since it will execute the service on startup, and the
service has been configured to constantly restart an attempt to establish a connection and run the service whenever
it is down.

4Detection of the flow of people will help modify the distance in choke points, simulating the lag time in a crowd, while routes such
as the connection point on level 5 between buildings 1 and 2 is not sheltered and un-passable in rain.

15

3 RESULTS

3 Results

3.1 CLI tool

We have completed the CLI tool for users to interact with, giving users the ability to add data to the graph, query
it, and validate map and supermap information. Below are screen captures of the tool in action, including the
interface and output.

Figure 2: CLI welcome output

Figure 3: Main Menu Option (0) - Running Pathfinding on every vertex

16

3.1 CLI tool 3 RESULTS

Figure 4: Main Menu Option (1) - Interface to select graph data to modify

17

3.1 CLI tool 3 RESULTS

Figure 5: Main Menu Option (1) - Loading of empty graph (unmapped area)

Figure 6: Main Menu Option (1) - Loading of graph instance (previously mapped area)

18

3.1 CLI tool 3 RESULTS

Figure 7: Main Menu Option (1) Graph data - Graph.py modification selection interface

Figure 8: Main Menu Option (1) Graph data - Interface to add new vertex

19

3.1 CLI tool 3 RESULTS

Figure 9: Main Menu Option (1) Graph data - Graph vertex modification selection interface

20

3.1 CLI tool 3 RESULTS

Figure 10: Main Menu Option (1) Graph data - Instance map pathfinding solution output

Figure 11: Main Menu Option (1) Graph data - Instance map vertices

21

3.1 CLI tool 3 RESULTS

Figure 12: Main Menu Option (2) - Lookup data validation - validating compiled vertices against maps

Figure 13: Main Menu Option (3) - Generating the supermap - running Dijkstra’s on every vertex

22

3.1 CLI tool 3 RESULTS

Figure 14: Main Menu Option (4) - Visualisation of mapped vertices through matplotlib

Figure 15: Visualisation of Building 5 Level 2 (Complete)

23

3.1 CLI tool 3 RESULTS

Figure 16: Visualisation of Building 5 Level 4 (Complete)

Figure 17: Visualisation of Building 2 Level 3 (Incomplete)

24

3.2 Visual Validation of Mapping Accuracy 3 RESULTS

3.2 Visual Validation of Mapping Accuracy

To verify the geometric accuracy of the graph data, the final visualisation of the campus generated by Graph.py

was rendered and overlaid on top of a satellite photograph of the SUTD campus pulled from Google Maps.

Key qualitative observations:

• Building alignment — Vertices were aligned with known landmarks such as the balcony intersection and the
FabLab balcony entrance.

• Scaling — The image was rotated to compensate from magnetic north to true north, and scaled to fit the
satellite image.

Figure 18: Composite Image

25

3.2 Visual Validation of Mapping Accuracy 3 RESULTS

Figure 19: Satellite image of Building 5

Figure 20: Matplotlib visualisation

26

4 CONCLUSION / LEARNING POINTS / REFLECTIONS

4 Conclusion / Learning Points / Reflections

1. Data Collection Difficulties. We initially thought that the floor plans and layouts were easily accessible, but
encountered difficulties in communicating and getting responses from the Office of Infrastructure. To overcome
this, we ended up conducting field work to measure the angles and distance between vertices.

2. Measurements. We were initially too strict with the entry distance, truncating the distance into integers with
the assumption that the loss in accuracy is compensated with a gain in measuring speed. This conflicted with
our distance validation and automatic edge setting functions, which uses trigonometry to derive the distance and
bearing of additional intersecting vertices. We changed the entry distance type from integer to float to reduce
the discrepancy of the output of our automatic edge weights which also returned a float from the calculation.

3. Field Work. When carrying out the data collection, we split the data collection into two stages. The first
stage was the manual determination of vertices to map and data entry into the program. This task involved
collecting publicly accessible maps from the fire escape plans in the smoke stops, and floor load bearing diagram
in the service lift area; followed by manually visiting all accessible locations and marking them out on paper,
creating a primitive hand drawn graph we used as reference for data entry. The next stage was the collection
of distance and bearings of each connected vertex on to build the set of edges in the graph.

Figure 21: Hand plot of Building 2 Level 2 vertices, their identification and edges

27

4 CONCLUSION / LEARNING POINTS / REFLECTIONS

4. Delays. For two terms in a row, we encountered a drop in data collection efficiency approaching the second
half of each term (between week 6 - 14) due to the ramp up of syllabus content. More time could have been
allocated in the beginning of each term to do the data collection instead of attempting to spread it across the
term which resulted in incomplete data collection in our dataset.

5. Scale of the first floor. Using our model of segregating the map into sections based on buildings and floors,
we have unintentionally neglected the entirety of the first floor of the campus which connects all the buildings
while also having its own venues. We currently have no good solution for segregating the first floor without
keeping the separation of zones intuitive to find or a standardised way to connect partitioned first floor segments.
Mapping the first floor as one map comes with its own difficulties in the form of its openness, which introduces a
high degree of connectivity and reduction of distinct landmarks that we were unable to reasonably come up with
vertices to create a satisfactory graph. Future research can be put into coming up with a process or algorithm
to tackle this limitation.

6. Space usage I. We attempted a naive speed up in the form of pre-computing all the solutions for every vertex
through a union of all the independent maps into one super map and ran Dijkstra’s from every vertex and saved
that result in .processed dijk supermap.json outlined from Path query.py. With 5 full graphs and an
additional 2 incomplete graphs with no edges, the compiled solution takes 38.8 Mb of space. Running Dijkstra’s
on each unique vertex against every other vertex, there is an intuition that there will potentially be repeated
solutions such as the reciprocal or sub-solutions that are solutions for other vertex pairs. Future research can
be put into analysing these patterns and coming up with ways to compact the solutions since storing this naive
approach is expensive.

7. Space usage II

n number of vertices (|V |)
m number of directed edges / arcs (|E|)
τ number of average traversals to reach destination
τ(s, d) number of traversals to reach destination d from source s
bid bytes to store a destination–vertex ID
bdist bytes to store the distance of solution
binstance bytes to a single calculated solution
bfile bytes to store file on disk

Examining individual solutions An individual solution (as described below as all destination solutions
for a single source vertex in the graph) consists of selecting a source vertex, running out modified Dijkstra’s to
get a distance and a full path list. The average space taken in storing one instance will be

binstance = bdist + τ × bid

where the specific space can be derived if the length of path is known.

{

"Source Vertex": {

"First Destination Vertex": [

Distance,

List of path in order

],

"Next Destination Vertex": [

Distance,

List of path in order

],

...,

"Last Destination Vertex": [

Distance,

List of path in order

]

},

"Next Source Vertex": {

28

4 CONCLUSION / LEARNING POINTS / REFLECTIONS

...

},

...

"Last Source Vertex": {

...

}

}

Examining storing all solutions As mentioned above, storing a single instance will cost
binstance = bdist + τ × bid. Since we are evaluating n solutions for n vertices, the total entries in
.processed dijk supermap.json will be n2, resulting in a specific total size of:

bfile = bdist × n2 + bid ×
n
∑

s=1

n
∑

d=1

τ(s, d)

Lower Bound Case The lower bound of storing all solutions (and consequently the smallest file size required)
occurs when Graph G is a complete graph which results in any τ(s, d) = 1 since any source vertex is connected
to every destination vertex and can be visualised as a complete symmetric digraph. We are able to reduce the
total space required down to:

bfile = bdist × n2 + bid ×
n
∑

s=1

n
∑

d=1

(τ(s, d) = 1) = n2 × (bdist + bid) = Θ(n2)

We opted to use Θ instead of Ω here as there is no graph that contains a path with a shorter shortest path than
a complete graph.

Upper Bound Case The upper bound of storing all solutions (and consequently the largest file size required)
occurs when every combination of source s and destination d in Graph G are connected by a long shortest
path. An extreme case of longest possible shortest path is the Hamiltonian path problem that has a depth
of n-1. Using Theorem 2.3 from Distance in graphs, Czechoslovak Mathematical Journal, Vol. 26 (1976) [3],

n(n − 1) ≤ d(p) ≤ n
3
+5n−6

6
, providing an upper bound in the form of

n3 − n

3
corrected using

n3 − n

6
/
(

n

2

)

to

account for the directed nature of the edges/arcs in our graph, giving us a cubic upper bound as shown:

bfile = bdist × n2 + bid × n
3−n

3
= Θ(n3)

Average Case On average the number of traversals required to reach destination d from source s is given
by:

τ = 1

n2

n
∑

s=1

n
∑

d=1

τ(s, d)

Rewriting this, we get:

n2τ =
n
∑

s=1

n
∑

d=1

τ(s, d)

Which lets us simplify the specific total size into an average total size of:

bfile = bdist × n2 + bid ×
n
∑

s=1

n
∑

d=1

τ(s, d) =⇒ bfile = n2(bdist + bid × τ)

This average total size fits between the lower and upper bound determined above, but due to the way data was
collected tends towards O(n3) as it is physically not possible to fulfill the conditions to be a complete graph
— any source vertex is unable to provide a direct path to every destination vertex in the graph without first
colliding with a nearer vertex.

Ω(n2) ≤ Θ(bfile) ≤ O(n3)

29

5 ACKNOWLEDGMENTS

5 Acknowledgments

I have to admit that the usage of edges and arcs in the report is rather loose as the program treats each edge
as a directed edge or arc despite each arc having a distinct magnetic bearing. Treating the graph as an undirected
graph allowed me to more easily visualise the shape of the graph in my head when approaching the analysis.

I would like to acknowledge the use of the University Library, Google and ChatGPT o3 model in searching for
resources and providing explanations for me to substantiate the analysis and evaluations made in the report.

I would also like to acknowledge my friends who helped me along the way in data collection, debugging, and
especially the time spent on data collection.

Finally I would like to thank Prof Simon for his patience and effort in supervising the project.

Name Role
Dr Simon Perrault Supervisor, Advisor
Ryan Pek Yi Ze Report, Software Development, Software Testing, Data Collection
Lee Cheng Yong Software Development, Software Testing, Data Collection
Pathomphu Kanapornthada Software Testing, Data Collection
Ming Liang Koh Data Collection
Mark Giam Data Collection
Amith Reddy Data Collection
Ng Qun Yu Data Collection
Samuel Lee Data Collection

30

REFERENCES REFERENCES

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 4 edition, 2022. Fourth Edition (CLRS v4).

[2] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–271,
1959.

[3] Roger C. Entringer, Douglas E. Jackson, and Daniel Snyder. Distance in graphs. Czechoslovak Mathematical
Journal, 26(2):444–452, 1976.

31

	Introduction
	Methodology
	Data Collection
	Equipment Used
	Campus Layout
	Mapping details

	Interface
	Running the CLI Program
	Custom Modules
	Graph Data Structure and Its Role in This Project
	Module: Graph.py
	Purpose and Overview
	Class: Graph
	Core Functionalities
	Graph Persistence and Data Management
	Error Handling and Validation
	Strategic Implementations
	Integration with Other Modules
	Conclusion

	Module: Json_OS_ProcessingFunctions.py
	Purpose and Overview
	Core Functionalities
	Strategic Implementations
	Integration with Other Modules
	Conclusion

	Module: Path_query.py
	Purpose and Overview
	Class: Query
	Core Functionalities
	Error Handling and Validation
	Data Management
	Strategic Implementations
	Integration with Other Modules
	Conclusion

	Inter-Module Interactions
	Strategic Overview
	Recommendations for Enhancements
	External Modules Used
	Hardware
	Software

	Results
	CLI tool
	Visual Validation of Mapping Accuracy

	Conclusion / Learning Points / Reflections
	Acknowledgments

